
Lua 5.2 Reference Manual
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes

Copyright © 2011–2013 Lua.org, PUC-Rio. Freely available under the terms of the Lua license.

Abridged for ControlByWeb's X-600 Modular Series
The following is an subset of the Lua 5.2 Reference Manual that contains only the features that apply to

ControlByWeb's X-600M. The Lua 5.2 Reference Manual in it's entirety can be found online at
http://www.lua.org/manual/5.2/.

1 – Introduction

Lua is an extension programming language designed to support general procedural
programming with data description facilities. It also offers good support for object-oriented
programming, functional programming, and data-driven programming. Lua is intended to be
used as a powerful, lightweight, embeddable scripting language for any program that needs
one.

Lua is free software, and is provided as usual with no guarantees, as stated in its license. The
implementation described in this manual is available at Lua's official web site,www.lua.org.

Like any other reference manual, this document is dry in places. For a discussion of the
decisions behind the design of Lua, see the technical papers available at Lua's web site. For
a detailed introduction to programming in Lua, see Roberto's book, Programming in Lua.

2 – Basic Concepts

This section describes the basic concepts of the language.

2.1 – Values and Types

Lua is a dynamically typed language. This means that variables do not have types; only
values do. There are no type definitions in the language. All values carry their own type.

All values in Lua are first-class values. This means that all values can be stored in variables,
passed as arguments to other functions, and returned as results.

The basic types in Lua are: nil, boolean, number, string, function, and table. Nil is the type of
the value nil, whose main property is to be different from any other value; it usually
represents the absence of a useful value. Boolean is the type of the values false and true.
Both nil and false make a condition false; any other value makes it true. Number represents
real (double-precision floating-point) numbers. Operations on numbers follow the same rules
of the underlying C implementation, which, in turn, usually follows the IEEE 754 standard.

http://www.lua.org/license.html
http://www.lua.org/manual/5.2/
http://www.lua.org/home.html

String represents immutable sequences of bytes. Lua is 8-bit clean: strings can contain any 8-
bit value, including embedded zeros ('\0').

Lua can call (and manipulate) functions written in Lua and functions written in C (see §3.4.9).

The type table implements associative arrays, that is, arrays that can be indexed not only with
numbers, but with any Lua value except nil and NaN (Not a Number, a special numeric value
used to represent undefined or unrepresentable results, such as 0/0). Tables can be
heterogeneous; that is, they can contain values of all types (except nil). Any key with value nil
is not considered part of the table. Conversely, any key that is not part of a table has an
associated value nil.

Tables are the sole data structuring mechanism in Lua; they can be used to represent
ordinary arrays, sequences, symbol tables, sets, records, graphs, trees, etc. To represent
records, Lua uses the field name as an index. The language supports this representation by
providing a.name as syntactic sugar for a["name"]. There are several convenient ways to
create tables in Lua (see §3.4.8).

We use the term sequence to denote a table where the set of all positive numeric keys is
equal to {1..n} for some integer n, which is called the length of the sequence (see§3.4.6).

Like indices, the values of table fields can be of any type. In particular, because functions are
first-class values, table fields can contain functions. Thus tables can also carry methods (see
§3.4.10).

The indexing of tables follows the definition of raw equality in the language. The expressions
a[i] and a[j] denote the same table element if and only if i and j are raw equal (that is, equal
without metamethods).

Tables, and function are objects: variables do not actually contain these values, only
references to them. Assignment, parameter passing, and function returns always manipulate
references to such values; these operations do not imply any kind of copy.

The library function type returns a string describing the type of a given value (see §6.1).

2.2 – Environments and the Global Environment

As will be discussed in §3.2 and §3.3.3, any reference to a global name var is syntactically
translated to _ENV.var. Moreover, every chunk is compiled in the scope of an external local
variable called _ENV (see §3.3.2), so _ENV itself is never a global name in a chunk.

Despite the existence of this external _ENV variable and the translation of global names,
_ENV is a completely regular name. In particular, you can define new variables and
parameters with that name. Each reference to a global name uses the _ENV that is visible at
that point in the program, following the usual visibility rules of Lua (see §3.5).

Any table used as the value of _ENV is called an environment.

Lua keeps a distinguished environment called the global environment. In Lua, the variable
_G is initialized with this value.

When Lua compiles a chunk, it initializes the value of its _ENV upvalue with the global
environment (see load). Therefore, by default, global variables in Lua code refer to entries in
the global environment. Moreover, all standard libraries are loaded in the global environment
and several functions there operate on that environment. You can use load (or loadfile) to load

http://www.lua.org/manual/5.2/manual.html#pdf-loadfile
http://www.lua.org/manual/5.2/manual.html#pdf-load
http://www.lua.org/manual/5.2/manual.html#pdf-load
http://www.lua.org/manual/5.2/manual.html#pdf-_G
http://www.lua.org/manual/5.2/manual.html#3.5
http://www.lua.org/manual/5.2/manual.html#3.3.2
http://www.lua.org/manual/5.2/manual.html#3.3.3
http://www.lua.org/manual/5.2/manual.html#3.2
http://www.lua.org/manual/5.2/manual.html#6.1
http://www.lua.org/manual/5.2/manual.html#pdf-type
http://www.lua.org/manual/5.2/manual.html#3.4.10
http://www.lua.org/manual/5.2/manual.html#3.4.6
http://www.lua.org/manual/5.2/manual.html#3.4.8
http://www.lua.org/manual/5.2/manual.html#3.4.9

a chunk with a different environment.

2.3 – Error Handling

Because Lua is an embedded extension language, all Lua actions start from C code in the
host program calling a function from the Lua library (see lua_pcall). Whenever an error occurs
during the compilation or execution of a Lua chunk, control returns to the host, which can take
appropriate measures (such as printing an error message).

Lua code can explicitly generate an error by calling the error function. If you need to catch
errors in Lua, you can use pcall or xpcall to call a given function in protected mode.

Whenever there is an error, an error object (also called an error message) is propagated with
information about the error. Lua itself only generates errors where the error object is a string,
but programs may generate errors with any value for the error object.

When you use xpcall or lua_pcall, you may give a message handler to be called in case of
errors. This function is called with the original error message and returns a new error
message. It is called before the error unwinds the stack, so that it can gather more
information about the error, for instance by inspecting the stack and creating a stack
traceback. This message handler is still protected by the protected call; so, an error inside the
message handler will call the message handler again. If this loop goes on, Lua breaks it and
returns an appropriate message.

2.4 – Metatables and Metamethods

Every value in Lua can have a metatable. This metatable is an ordinary Lua table that defines
the behavior of the original value under certain special operations. You can change several
aspects of the behavior of operations over a value by setting specific fields in its metatable.
For instance, when a non-numeric value is the operand of an addition, Lua checks for a
function in the field "__add" of the value's metatable. If it finds one, Lua calls this function to
perform the addition.

The keys in a metatable are derived from the event names; the corresponding values are
called metamethods. In the previous example, the event is "add" and the metamethod is the
function that performs the addition.

You can query the metatable of any value using the getmetatable function.

You can replace the metatable of tables using the setmetatable function.

Tables have individual metatables (although multiple tables can share their metatables).
Values of all other types share one single metatable per type; that is, there is one single
metatable for all numbers, one for all strings, etc. By default, a value has no metatable, but
the string library sets a metatable for the string type (see §6.4).

A metatable controls how an object behaves in arithmetic operations, order comparisons,
concatenation, length operation, and indexing. A metatable also can define a function to be
called when a table is garbage collected. When Lua performs one of these operations over a
value, it checks whether this value has a metatable with the corresponding event. If so, the
value associated with that key (the metamethod) controls how Lua will perform the operation.

Metatables control the operations listed next. Each operation is identified by its corresponding

http://www.lua.org/manual/5.2/manual.html#6.4
http://www.lua.org/manual/5.2/manual.html#pdf-setmetatable
http://www.lua.org/manual/5.2/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.2/manual.html#lua_pcall
http://www.lua.org/manual/5.2/manual.html#pdf-xpcall
http://www.lua.org/manual/5.2/manual.html#pdf-xpcall
http://www.lua.org/manual/5.2/manual.html#pdf-pcall
http://www.lua.org/manual/5.2/manual.html#pdf-error
http://www.lua.org/manual/5.2/manual.html#lua_pcall

name. The key for each operation is a string with its name prefixed by two underscores, '__';
for instance, the key for operation "add" is the string "__add".

The semantics of these operations is better explained by a Lua function describing how the
interpreter executes the operation. The code shown here in Lua is only illustrative; the real
behavior is hard coded in the interpreter and it is much more efficient than this simulation. All
functions used in these descriptions (rawget, tonumber, etc.) are described in §6.1. In
particular, to retrieve the metamethod of a given object, we use the expression

 metatable(obj)[event]

This should be read as

 rawget(getmetatable(obj) or {}, event)

This means that the access to a metamethod does not invoke other metamethods, and
access to objects with no metatables does not fail (it simply results in nil).

For the unary - and # operators, the metamethod is called with a dummy second argument.
This extra argument is only to simplify Lua's internals; it may be removed in future versions
and therefore it is not present in the following code. (For most uses this extra argument is
irrelevant.)

•"add": the + operation.

The function getbinhandler below defines how Lua chooses a handler for a binary
operation. First, Lua tries the first operand. If its type does not define a handler for the
operation, then Lua tries the second operand.

 function getbinhandler (op1, op2, event)
 return metatable(op1)[event] or metatable(op2)[event]
 end

By using this function, the behavior of the op1 + op2 is

 function add_event (op1, op2)
 local o1, o2 = tonumber(op1), tonumber(op2)
 if o1 and o2 then -- both operands are numeric?
 return o1 + o2 -- '+' here is the primitive 'add'
 else -- at least one of the operands is not numeric
 local h = getbinhandler(op1, op2, "__add")
 if h then
 -- call the handler with both operands
 return (h(op1, op2))
 else -- no handler available: default behavior
 error(···)
 end
 end
 end
•"sub": the - operation. Behavior similar to the "add" operation.
•"mul": the * operation. Behavior similar to the "add" operation.

http://www.lua.org/manual/5.2/manual.html#6.1
http://www.lua.org/manual/5.2/manual.html#pdf-tonumber
http://www.lua.org/manual/5.2/manual.html#pdf-rawget

•"div": the / operation. Behavior similar to the "add" operation.
•"mod": the % operation. Behavior similar to the "add" operation, with the operation
o1 - floor(o1/o2)*o2 as the primitive operation.
•"pow": the ^ (exponentiation) operation. Behavior similar to the "add" operation, with
the function pow (from the C math library) as the primitive operation.
•"unm": the unary - operation.

 function unm_event (op)
 local o = tonumber(op)
 if o then -- operand is numeric?
 return -o -- '-' here is the primitive 'unm'
 else -- the operand is not numeric.
 -- Try to get a handler from the operand
 local h = metatable(op).__unm
 if h then
 -- call the handler with the operand
 return (h(op))
 else -- no handler available: default behavior
 error(···)
 end
 end
 end
•"concat": the .. (concatenation) operation.

 function concat_event (op1, op2)
 if (type(op1) == "string" or type(op1) == "number") and
 (type(op2) == "string" or type(op2) == "number") then
 return op1 .. op2 -- primitive string concatenation
 else
 local h = getbinhandler(op1, op2, "__concat")
 if h then
 return (h(op1, op2))
 else
 error(···)
 end
 end
 end

•"len": the # operation.

 function len_event (op)
 if type(op) == "string" then
 return strlen(op) -- primitive string length
 else
 local h = metatable(op).__len
 if h then
 return (h(op)) -- call handler with the operand

 elseif type(op) == "table" then
 return #op -- primitive table length
 else -- no handler available: error
 error(···)
 end
 end
 end

See §3.4.6 for a description of the length of a table.

•"eq": the == operation. The function getequalhandler defines how Lua chooses a
metamethod for equality. A metamethod is selected only when both values being
compared have the same type and the same metamethod for the selected operation,
and the values are tables.

 function getequalhandler (op1, op2)
 if type(op1) ~= type(op2) or
 (type(op1) ~= "table")then
 return nil -- different values
 end
 local mm1 = metatable(op1).__eq
 local mm2 = metatable(op2).__eq
 if mm1 == mm2 then return mm1 else return nil end
 end

The "eq" event is defined as follows:

 function eq_event (op1, op2)
 if op1 == op2 then -- primitive equal?
 return true -- values are equal
 end
 -- try metamethod
 local h = getequalhandler(op1, op2)
 if h then
 return not not h(op1, op2)
 else
 return false
 end
 end

Note that the result is always a boolean.

•"lt": the < operation.

 function lt_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 < op2 -- numeric comparison
 elseif type(op1) == "string" and type(op2) == "string"

http://www.lua.org/manual/5.2/manual.html#3.4.6

then
 return op1 < op2 -- lexicographic comparison
 else
 local h = getbinhandler(op1, op2, "__lt")
 if h then
 return not not h(op1, op2)
 else
 error(···)
 end
 end
 end

Note that the result is always a boolean.

•"le": the <= operation.

 function le_event (op1, op2)
 if type(op1) == "number" and type(op2) == "number" then
 return op1 <= op2 -- numeric comparison
 elseif type(op1) == "string" and type(op2) == "string"
then
 return op1 <= op2 -- lexicographic comparison
 else
 local h = getbinhandler(op1, op2, "__le")
 if h then
 return not not h(op1, op2)
 else
 h = getbinhandler(op1, op2, "__lt")
 if h then
 return not h(op2, op1)
 else
 error(···)
 end
 end
 end
 end

Note that, in the absence of a "le" metamethod, Lua tries the "lt", assuming that a <=
b is equivalent to not (b < a).

As with the other comparison operators, the result is always a boolean.

•"index": The indexing access table[key]. Note that the metamethod is tried only
when key is not present in table. (When table is not a table, no key is ever present, so
the metamethod is always tried.)

 function gettable_event (table, key)
 local h

 if type(table) == "table" then
 local v = rawget(table, key)
 -- if key is present, return raw value
 if v ~= nil then return v end
 h = metatable(table).__index
 if h == nil then return nil end
 else
 h = metatable(table).__index
 if h == nil then
 error(···)
 end
 end
 if type(h) == "function" then
 return (h(table, key)) -- call the handler
 else return h[key] -- or repeat operation on it
 end
 end
•"newindex": The indexing assignment table[key] = value. Note that the metamethod
is tried only when key is not present in table.

 function settable_event (table, key, value)
 local h
 if type(table) == "table" then
 local v = rawget(table, key)
 -- if key is present, do raw assignment
 if v ~= nil then rawset(table, key, value); return end
 h = metatable(table).__newindex
 if h == nil then rawset(table, key, value); return end
 else
 h = metatable(table).__newindex
 if h == nil then
 error(···)
 end
 end
 if type(h) == "function" then
 h(table, key,value) -- call the handler
 else h[key] = value -- or repeat operation on
it
 end
 end

•"call": called when Lua calls a value.

 function function_event (func, ...)
 if type(func) == "function" then
 return func(...) -- primitive call

 else
 local h = metatable(func).__call
 if h then
 return h(func, ...)
 else
 error(···)
 end
 end
 end

2.5 – Garbage Collection

Lua performs automatic memory management. This means that you have to worry neither
about allocating memory for new objects nor about freeing it when the objects are no longer
needed. Lua manages memory automatically by running a garbage collector to collect all
dead objects (that is, objects that are no longer accessible from Lua). All memory used by Lua
is subject to automatic management: strings, tables, functions, internal structures, etc.

Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its
garbage-collection cycles: the garbage-collector pause and the garbage-collector step
multiplier. Both use percentage points as units (e.g., a value of 100 means an internal value
of 1).

The garbage-collector pause controls how long the collector waits before starting a new cycle.
Larger values make the collector less aggressive. Values smaller than 100 mean the collector
will not wait to start a new cycle. A value of 200 means that the collector waits for the total
memory in use to double before starting a new cycle.

The garbage-collector step multiplier controls the relative speed of the collector relative to
memory allocation. Larger values make the collector more aggressive but also increase the
size of each incremental step. Values smaller than 100 make the collector too slow and can
result in the collector never finishing a cycle. The default is 200, which means that the
collector runs at "twice" the speed of memory allocation.

If you set the step multiplier to a very large number (larger than 10% of the maximum number
of bytes that the program may use), the collector behaves like a stop-the-world collector. If
you then set the pause to 200, the collector behaves as in old Lua versions, doing a complete
collection every time Lua doubles its memory usage.

You can change these numbers by calling collectgarbage in Lua. You can also use these
functions to control the collector directly (e.g., stop and restart it).

As an experimental feature in Lua 5.2, you can change the collector's operation mode from
incremental to generational. A generational collector assumes that most objects die young,
and therefore it traverses only young (recently created) objects. This behavior can reduce the
time used by the collector, but also increases memory usage (as old dead objects may
accumulate). To mitigate this second problem, from time to time the generational collector
performs a full collection. Remember that this is an experimental feature; you are welcome to
try it, but check your gains.

http://www.lua.org/manual/5.2/manual.html#pdf-collectgarbage

2.5.1 – Garbage-Collection Metamethods

You can set garbage-collector metamethods for tables. These metamethods are also called
finalizers. Finalizers allow you to coordinate Lua's garbage collection with external resource
management (such as closing files, network or database connections, or freeing your own
memory).

For an object (table) to be finalized when collected, you must mark it for finalization. You mark
an object for finalization when you set its metatable and the metatable has a field indexed by
the string "__gc". Note that if you set a metatable without a __gc field and later create that
field in the metatable, the object will not be marked for finalization. However, after an object is
marked, you can freely change the __gc field of its metatable.

When a marked object becomes garbage, it is not collected immediately by the garbage
collector. Instead, Lua puts it in a list. After the collection, Lua does the equivalent of the
following function for each object in that list:

 function gc_event (obj)
 local h = metatable(obj).__gc
 if type(h) == "function" then
 h(obj)
 end
 end
At the end of each garbage-collection cycle, the finalizers for objects are called in the reverse
order that they were marked for collection, among those collected in that cycle; that is, the
first finalizer to be called is the one associated with the object marked last in the program. The
execution of each finalizer may occur at any point during the execution of the regular code.

Because the object being collected must still be used by the finalizer, it (and other objects
accessible only through it) must be resurrected by Lua. Usually, this resurrection is transient,
and the object memory is freed in the next garbage-collection cycle. However, if the finalizer
stores the object in some global place (e.g., a global variable), then there is a permanent
resurrection. In any case, the object memory is freed only when it becomes completely
inaccessible; its finalizer will never be called twice.

When you close a state (see lua_close), Lua calls the finalizers of all objects marked for
finalization, following the reverse order that they were marked. If any finalizer marks new
objects for collection during that phase, these new objects will not be finalized.

2.5.2 – Weak Tables

A weak table is a table whose elements are weak references. A weak reference is ignored by
the garbage collector. In other words, if the only references to an object are weak references,
then the garbage collector will collect that object.

A weak table can have weak keys, weak values, or both. A table with weak keys allows the
collection of its keys, but prevents the collection of its values. A table with both weak keys and
weak values allows the collection of both keys and values. In any case, if either the key or the
value is collected, the whole pair is removed from the table. The weakness of a table is
controlled by the __mode field of its metatable. If the __mode field is a string containing the
character 'k', the keys in the table are weak. If __modecontains 'v', the values in the table are
weak.

http://www.lua.org/manual/5.2/manual.html#lua_close

A table with weak keys and strong values is also called an ephemeron table. In an ephemeron
table, a value is considered reachable only if its key is reachable. In particular, if the only
reference to a key comes through its value, the pair is removed.

Any change in the weakness of a table may take effect only at the next collect cycle. In
particular, if you change the weakness to a stronger mode, Lua may still collect some items
from that table before the change takes effect.

Only objects that have an explicit construction are removed from weak tables. Values, such
as numbers and light C functions, are not subject to garbage collection, and therefore are not
removed from weak tables (unless its associated value is collected). Although strings are
subject to garbage collection, they do not have an explicit construction, and therefore are not
removed from weak tables.

Resurrected objects (that is, objects being finalized and objects accessible only through
objects being finalized) have a special behavior in weak tables. They are removed from weak
values before running their finalizers, but are removed from weak keys only in the next
collection after running their finalizers, when such objects are actually freed. This behavior
allows the finalizer to access properties associated with the object through weak tables.

If a weak table is among the resurrected objects in a collection cycle, it may not be properly
cleared until the next cycle.

3 – The Language

This section describes the lexis, the syntax, and the semantics of Lua. In other words, this
section describes which tokens are valid, how they can be combined, and what their
combinations mean.

Language constructs will be explained using the usual extended BNF notation, in which {a}
means 0 or more a's, and [a] means an optional a. Non-terminals are shown like non-
terminal, keywords are shown like kword, and other terminal symbols are shown like ‘=’. The
complete syntax of Lua can be found in §9 at the end of this manual.

3.1 – Lexical Conventions

Lua is a free-form language. It ignores spaces (including new lines) and comments between
lexical elements (tokens), except as delimiters between names and keywords.

Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not
beginning with a digit. Identifiers are used to name variables, table fields, and labels.

The following keywords are reserved and cannot be used as names:

 and break do else elseif end
 false for function goto if in
 local nil not or repeat return
 then true until while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different,
valid names. As a convention, names starting with an underscore followed by uppercase
letters (such as _VERSION) are reserved for variables used by Lua.

http://www.lua.org/manual/5.2/manual.html#pdf-_VERSION
http://www.lua.org/manual/5.2/manual.html#9

The following strings denote other tokens:

 + - * / % ^ #
 == ~= <= >= < > =
 () { } [] ::
 ; : , . .. …

Literal strings can be delimited by matching single or double quotes, and can contain the
following C-like escape sequences: '\a' (bell), '\b' (backspace), '\f' (form feed), '\n' (newline), '\r'
(carriage return), '\t' (horizontal tab), '\v' (vertical tab), '\\' (backslash), '\"' (quotation mark
[double quote]), and '\'' (apostrophe [single quote]). A backslash followed by a real newline
results in a newline in the string. The escape sequence '\z' skips the following span of white-
space characters, including line breaks; it is particularly useful to break and indent a long
literal string into multiple lines without adding the newlines and spaces into the string
contents.

A byte in a literal string can also be specified by its numerical value. This can be done with the
escape sequence \xXX, where XX is a sequence of exactly two hexadecimal digits, or with
the escape sequence \ddd, where ddd is a sequence of up to three decimal digits. (Note that
if a decimal escape is to be followed by a digit, it must be expressed using exactly three
digits.) Strings in Lua can contain any 8-bit value, including embedded zeros, which can be
specified as '\0'.

Literal strings can also be defined using a long format enclosed by long brackets. We define
an opening long bracket of level n as an opening square bracket followed by n equal signs
followed by another opening square bracket. So, an opening long bracket of level 0 is written
as [[, an opening long bracket of level 1 is written as [=[, and so on. A closing long bracket is
defined similarly; for instance, a closing long bracket of level 4 is written as]====]. A long
literal starts with an opening long bracket of any level and ends at the first closing long
bracket of the same level. It can contain any text except a closing bracket of the proper level.
Literals in this bracketed form can run for several lines, do not interpret any escape
sequences, and ignore long brackets of any other level. Any kind of end-of-line sequence
(carriage return, newline, carriage return followed by newline, or newline followed by carriage
return) is converted to a simple newline.

Any byte in a literal string not explicitly affected by the previous rules represents itself.
However, Lua opens files for parsing in text mode, and the system file functions may have
problems with some control characters. So, it is safer to represent non-text data as a quoted
literal with explicit escape sequences for non-text characters.

For convenience, when the opening long bracket is immediately followed by a newline, the
newline is not included in the string. As an example, in a system using ASCII (in which 'a' is
coded as 97, newline is coded as 10, and '1' is coded as 49), the five literal strings below
denote the same string:

 a = 'alo\n123"'
 a = "alo\n123\""
 a = '\97lo\10\04923"'
 a = [[alo
 123"]]

 a = [==[
 alo
 123"]==]

A numerical constant can be written with an optional fractional part and an optional decimal
exponent, marked by a letter 'e' or 'E'. Lua also accepts hexadecimal constants, which start
with 0x or 0X. Hexadecimal constants also accept an optional fractional part plus an optional
binary exponent, marked by a letter 'p' or 'P'. Examples of valid numerical constants are

 3 3.0 3.1416 314.16e-2 0.31416E1
 0xff 0x0.1E 0xA23p-4 0X1.921FB54442D18P+1

A comment starts with a double hyphen (--) anywhere outside a string. If the text immediately
after -- is not an opening long bracket, the comment is a short comment, which runs until the
end of the line. Otherwise, it is a long comment, which runs until the corresponding closing
long bracket. Long comments are frequently used to disable code temporarily.

3.2 – Variables

Variables are places that store values. There are three kinds of variables in Lua: global
variables, local variables, and table fields.

A single name can denote a global variable or a local variable (or a function's formal
parameter, which is a particular kind of local variable):

 var ::= Name
Name denotes identifiers, as defined in §3.1.

Any variable name is assumed to be global unless explicitly declared as a local (see §3.3.7).
Local variables are lexically scoped: local variables can be freely accessed by functions
defined inside their scope (see §3.5).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

 var ::= prefixexp ‘[’ exp ‘]’

The meaning of accesses to table fields can be changed via metatables. An access to an
indexed variable t[i] is equivalent to a call gettable_event(t,i). (See §2.4 for a complete
description of the gettable_event function. This function is not defined or callable in Lua. We
use it here only for explanatory purposes.)

The syntax var.Name is just syntactic sugar for var["Name"]:

 var ::= prefixexp ‘.’ Name

An access to a global variable x is equivalent to _ENV.x. Due to the way that chunks are
compiled, _ENV is never a global name (see §2.2).

http://www.lua.org/manual/5.2/manual.html#2.2
http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#3.5
http://www.lua.org/manual/5.2/manual.html#3.3.7
http://www.lua.org/manual/5.2/manual.html#3.1

3.3 – Statements

Lua supports an almost conventional set of statements, similar to those in Pascal or C. This
set includes assignments, control structures, function calls, and variable declarations.

3.3.1 – Blocks

A block is a list of statements, which are executed sequentially:

 block ::= {stat}
Lua has empty statements that allow you to separate statements with semicolons, start a
block with a semicolon or write two semicolons in sequence:

 stat ::= ‘;’
Function calls and assignments can start with an open parenthesis. This possibility leads to
an ambiguity in Lua's grammar. Consider the following fragment:

 a = b + c
 (print or io.write)('done')
The grammar could see it in two ways:

 a = b + c(print or io.write)('done')

 a = b + c; (print or io.write)('done')

The current parser always sees such constructions in the first way, interpreting the open
parenthesis as the start of the arguments to a call. To avoid this ambiguity, it is a good
practice to always precede with a semicolon statements that start with a parenthesis:

 ;(print or io.write)('done')

A block can be explicitly delimited to produce a single statement:

 stat ::= do block end

Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also
sometimes used to add a return statement in the middle of another block (see§3.3.4).

3.3.2 – Chunks

The unit of compilation of Lua is called a chunk. Syntactically, a chunk is simply a block:

 chunk ::= block

Lua handles a chunk as the body of an anonymous function with a variable number of
arguments (see §3.4.10). As such, chunks can define local variables, receive arguments, and
return values. Moreover, such anonymous function is compiled as in the scope of an external
local variable called _ENV (see §2.2). The resulting function always has _ENV as its only
upvalue, even if it does not use that variable.

A chunk can be stored in a file or in a string inside the host program. To execute a chunk, Lua
first precompiles the chunk into instructions for a virtual machine, and then it executes the

http://www.lua.org/manual/5.2/manual.html#2.2
http://www.lua.org/manual/5.2/manual.html#3.4.10
http://www.lua.org/manual/5.2/manual.html#3.3.4

compiled code with an interpreter for the virtual machine.

3.3.3 – Assignment

Lua allows multiple assignments. Therefore, the syntax for assignment defines a list of
variables on the left side and a list of expressions on the right side. The elements in both lists
are separated by commas:

 stat ::= varlist ‘=’ explist
 varlist ::= var {‘,’ var}
 explist ::= exp {‘,’ exp}

Expressions are discussed in §3.4.

Before the assignment, the list of values is adjusted to the length of the list of variables. If
there are more values than needed, the excess values are thrown away. If there are fewer
values than needed, the list is extended with as many nil's as needed. If the list of
expressions ends with a function call, then all values returned by that call enter the list of
values, before the adjustment (except when the call is enclosed in parentheses; see §3.4).

The assignment statement first evaluates all its expressions and only then are the
assignments performed. Thus the code

 i = 3
 i, a[i] = i+1, 20

sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is
assigned 4. Similarly, the line

 x, y = y, x

exchanges the values of x and y, and

 x, y, z = y, z, x

cyclically permutes the values of x, y, and z.

The meaning of assignments to global variables and table fields can be changed via
metatables. An assignment to an indexed variable t[i] = val is equivalent
tosettable_event(t,i,val). (See §2.4 for a complete description of the settable_event
function. This function is not defined or callable in Lua. We use it here only for explanatory
purposes.)

An assignment to a global variable x = val is equivalent to the assignment _ENV.x = val
(see §2.2).

3.3.4 – Control Structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

 stat ::= while exp do block end
 stat ::= repeat block until exp
 stat ::= if exp then block {elseif exp then block} [else block] end

http://www.lua.org/manual/5.2/manual.html#2.2
http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#3.4
http://www.lua.org/manual/5.2/manual.html#3.4

Lua also has a for statement, in two flavors (see §3.3.5).

The condition expression of a control structure can return any value. Both false and nil are
considered false. All values different from nil and false are considered true (in particular, the
number 0 and the empty string are also true).

In the repeat–until loop, the inner block does not end at the until keyword, but only after the
condition. So, the condition can refer to local variables declared inside the loop block.

The goto statement transfers the program control to a label. For syntactical reasons, labels in
Lua are considered statements too:

 stat ::= goto Name
 stat ::= label
 label ::= ‘::’ Name ‘::’

A label is visible in the entire block where it is defined, except inside nested blocks where a
label with the same name is defined and inside nested functions. A goto may jump to any
visible label as long as it does not enter into the scope of a local variable.

Labels and empty statements are called void statements, as they perform no actions.

The break statement terminates the execution of a while, repeat, or for loop, skipping to the
next statement after the loop:

 stat ::= break

A break ends the innermost enclosing loop.

The return statement is used to return values from a function or a chunk (which is a function
in disguise). Functions can return more than one value, so the syntax for thereturn statement
is

 stat ::= return [explist] [‘;’]

The return statement can only be written as the last statement of a block. If it is really
necessary to return in the middle of a block, then an explicit inner block can be used, as in
the idiom do return end, because now return is the last statement in its (inner) block.

3.3.5 – For Statement

The for statement has two forms: one numeric and one generic.

The numeric for loop repeats a block of code while a control variable runs through an
arithmetic progression. It has the following syntax:

 stat ::= for Name ‘=’ exp ‘,’ exp [‘,’ exp] do block end

The block is repeated for name starting at the value of the first exp, until it passes the second
exp by steps of the third exp. More precisely, a for statement like

 for v = e1, e2, e3 do block end

is equivalent to the code:

http://www.lua.org/manual/5.2/manual.html#3.3.5

 do
 local var, limit, step = tonumber(e1), tonumber(e2), tonumber(e3)
 if not (var and limit and step) then error() end
 while (step > 0 and var <= limit) or (step <= 0 and var >= limit)
do
 local v = var
 block
 var = var + step
 end
 end

Note the following:

•All three control expressions are evaluated only once, before the loop starts. They
must all result in numbers.
•var, limit, and step are invisible variables. The names shown here are for explanatory
purposes only.
•If the third expression (the step) is absent, then a step of 1 is used.
•You can use break to exit a for loop.
•The loop variable v is local to the loop; you cannot use its value after the for ends or
is broken. If you need this value, assign it to another variable before breaking or
exiting the loop.

The generic for statement works over functions, called iterators. On each iteration, the iterator
function is called to produce a new value, stopping when this new value is nil. The generic for
loop has the following syntax:

 stat ::= for namelist in explist do block end
 namelist ::= Name {‘,’ Name}

A for statement like

 for var_1, ···, var_n in explist do block end

is equivalent to the code:

 do
 local f, s, var = explist
 while true do
 local var_1, ···, var_n = f(s, var)
 if var_1 == nil then break end
 var = var_1
 block
 end
 end

Note the following:

•explist is evaluated only once. Its results are an iterator function, a state, and an
initial value for the first iterator variable.

•f, s, and var are invisible variables. The names are here for explanatory purposes
only.
•You can use break to exit a for loop.
•The loop variables var_i are local to the loop; you cannot use their values after the
for ends. If you need these values, then assign them to other variables before
breaking or exiting the loop.

3.3.6 – Function Calls as Statements

To allow possible side-effects, function calls can be executed as statements:

 stat ::= functioncall

In this case, all returned values are thrown away. Function calls are explained in §3.4.9.

3.3.7 – Local Declarations

Local variables can be declared anywhere inside a block. The declaration can include an
initial assignment:

 stat ::= local namelist [‘=’ explist]

If present, an initial assignment has the same semantics of a multiple assignment (see
§3.3.3). Otherwise, all variables are initialized with nil.

A chunk is also a block (see §3.3.2), and so local variables can be declared in a chunk
outside any explicit block.

The visibility rules for local variables are explained in §3.5.

3.4 – Expressions

The basic expressions in Lua are the following:

 exp ::= prefixexp
 exp ::= nil | false | true
 exp ::= Number
 exp ::= String
 exp ::= functiondef
 exp ::= tableconstructor
 exp ::= ‘...’
 exp ::= exp binop exp
 exp ::= unop exp
 prefixexp ::= var | functioncall | ‘(’ exp ‘)’

Numbers and literal strings are explained in §3.1; variables are explained in §3.2; function
definitions are explained in §3.4.10; function calls are explained in §3.4.9; table constructors
are explained in §3.4.8. Vararg expressions, denoted by three dots ('...'), can only be used
when directly inside a vararg function; they are explained in §3.4.10.

Binary operators comprise arithmetic operators (see §3.4.1), relational operators (see §3.4.3),

http://www.lua.org/manual/5.2/manual.html#3.4.3
http://www.lua.org/manual/5.2/manual.html#3.4.1
http://www.lua.org/manual/5.2/manual.html#3.4.10
http://www.lua.org/manual/5.2/manual.html#3.4.8
http://www.lua.org/manual/5.2/manual.html#3.4.9
http://www.lua.org/manual/5.2/manual.html#3.4.10
http://www.lua.org/manual/5.2/manual.html#3.2
http://www.lua.org/manual/5.2/manual.html#3.1
http://www.lua.org/manual/5.2/manual.html#3.5
http://www.lua.org/manual/5.2/manual.html#3.3.2
http://www.lua.org/manual/5.2/manual.html#3.3.3
http://www.lua.org/manual/5.2/manual.html#3.4.9

logical operators (see §3.4.4), and the concatenation operator (see §3.4.5). Unary operators
comprise the unary minus (see §3.4.1), the unary not (see §3.4.4), and the unary length
operator (see §3.4.6).

Both function calls and vararg expressions can result in multiple values. If a function call is
used as a statement (see §3.3.6), then its return list is adjusted to zero elements, thus
discarding all returned values. If an expression is used as the last (or the only) element of a
list of expressions, then no adjustment is made (unless the expression is enclosed in
parentheses). In all other contexts, Lua adjusts the result list to one element, either discarding
all values except the first one or adding a single nil if there are no values.

Here are some examples:

 f() -- adjusted to 0 results
 g(f(), x) -- f() is adjusted to 1 result
 g(x, f()) -- g gets x plus all results from f()
 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil)
 a,b = ... -- a gets the first vararg parameter, b gets
 -- the second (both a and b can get nil if there
 -- is no corresponding vararg parameter)

 a,b,c = x, f() -- f() is adjusted to 2 results
 a,b,c = f() -- f() is adjusted to 3 results
 return f() -- returns all results from f()
 return ... -- returns all received vararg parameters
 return x,y,f() -- returns x, y, and all results from f()
 {f()} -- creates a list with all results from f()
 {...} -- creates a list with all vararg parameters
 {f(), nil} -- f() is adjusted to 1 result

Any expression enclosed in parentheses always results in only one value. Thus,
(f(x,y,z)) is always a single value, even if f returns several values. (The value of
(f(x,y,z)) is the first value returned by f or nil if f does not return any values.)

3.4.1 – Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), *
(multiplication), / (division), % (modulo), and ^ (exponentiation); and unary -(mathematical
negation). If the operands are numbers, or strings that can be converted to numbers (see
§3.4.2), then all operations have the usual meaning. Exponentiation works for any exponent.
For instance, x^(-0.5) computes the inverse of the square root of x. Modulo is defined as

 a % b == a – math.floor(a/b)*b

That is, it is the remainder of a division that rounds the quotient towards minus infinity.

3.4.2 – Coercion

Lua provides automatic conversion between string and number values at run time. Any

http://www.lua.org/manual/5.2/manual.html#3.4.2
http://www.lua.org/manual/5.2/manual.html#3.3.6
http://www.lua.org/manual/5.2/manual.html#3.4.6
http://www.lua.org/manual/5.2/manual.html#3.4.4
http://www.lua.org/manual/5.2/manual.html#3.4.1
http://www.lua.org/manual/5.2/manual.html#3.4.5
http://www.lua.org/manual/5.2/manual.html#3.4.4

arithmetic operation applied to a string tries to convert this string to a number, following the
rules of the Lua lexer. (The string may have leading and trailing spaces and a sign.)
Conversely, whenever a number is used where a string is expected, the number is converted
to a string, in a reasonable format. For complete control over how numbers are converted to
strings, use the format function from the string library (see string.format).

3.4.3 – Relational Operators

The relational operators in Lua are

 == ~= < > <= >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result
is false. Otherwise, the values of the operands are compared. Numbers and strings are
compared in the usual way. Tables are compared by reference: two objects are considered
equal only if they are the same object. Every time you create a new object (a table), this new
object is different from any previously existing object. Closures with the same reference are
always equal. Closures with any detectable difference (different behavior, different definition)
are always different.

You can change the way that Lua compares tables by using the "eq" metamethod (see §2.4).

The conversion rules of §3.4.2 do not apply to equality comparisons. Thus, "0"==0 evaluates
to false, and t[0] and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared
as such. Otherwise, if both arguments are strings, then their values are compared according
to the current locale. Otherwise, Lua tries to call the "lt" or the "le" metamethod (see §2.4). A
comparison a > b is translated to b < a and a >= b is translated to b <= a.

3.4.4 – Logical Operators

The logical operators in Lua are and, or, and not. Like the control structures (see §3.3.4), all
logical operators consider both false and nil as false and anything else as true.

The negation operator not always returns false or true. The conjunction operator and returns
its first argument if this value is false or nil; otherwise, and returns its second argument. The
disjunction operator or returns its first argument if this value is different from nil and false;
otherwise, or returns its second argument. Both and and or use short-cut evaluation; that is,
the second operand is evaluated only if necessary. Here are some examples:

 10 or 20 --> 10
 10 or error() --> 10
 nil or "a" --> "a"
 nil and 10 --> nil
 false and error() --> false
 false and nil --> false
 false or nil --> nil
 10 and 20 --> 20

http://www.lua.org/manual/5.2/manual.html#3.3.4
http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#3.4.2
http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#pdf-string.format

(In this manual, --> indicates the result of the preceding expression.)

3.4.5 – Concatenation

The string concatenation operator in Lua is denoted by two dots ('..'). If both operands are
strings or numbers, then they are converted to strings according to the rules mentioned in
§3.4.2. Otherwise, the __concat metamethod is called (see §2.4).

3.4.6 – The Length Operator

The length operator is denoted by the unary prefix operator #. The length of a string is its
number of bytes (that is, the usual meaning of string length when each character is one byte).

A program can modify the behavior of the length operator for any value but strings through the
__len metamethod (see §2.4).

Unless a __len metamethod is given, the length of a table t is only defined if the table is a
sequence, that is, the set of its positive numeric keys is equal to {1..n} for some integer n. In
that case, n is its length. Note that a table like

 {10, 20, nil, 40}

is not a sequence, because it has the key 4 but does not have the key 3. (So, there is no n
such that the set {1..n} is equal to the set of positive numeric keys of that table.) Note,
however, that non-numeric keys do not interfere with whether a table is a sequence.

3.4.7 – Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

 or
 and
 < > <= >= ~= ==
 ..
 + -
 * / %
 not # - (unary)
 ^

As usual, you can use parentheses to change the precedences of an expression. The
concatenation ('..') and exponentiation ('^') operators are right associative. All other binary
operators are left associative.

3.4.8 – Table Constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a
new table is created. A constructor can be used to create an empty table or to create a table
and initialize some of its fields. The general syntax for constructors is

 tableconstructor ::= ‘{’ [fieldlist] ‘}’
 fieldlist ::= field {fieldsep field} [fieldsep]
 field ::= ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp | exp

http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#3.4.2

 fieldsep ::= ‘,’ | ‘;’

Each field of the form [exp1] = exp2 adds to the new table an entry with key exp1 and
value exp2. A field of the form name = exp is equivalent to ["name"] = exp. Finally, fields
of the form exp are equivalent to [i] = exp, where i are consecutive numerical integers, starting
with 1. Fields in the other formats do not affect this counting. For example,

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

is equivalent to

 do
 local t = {}
 t[f(1)] = g
 t[1] = "x" -- 1st exp
 t[2] = "y" -- 2nd exp
 t.x = 1 -- t["x"] = 1
 t[3] = f(x) -- 3rd exp
 t[30] = 23
 t[4] = 45 -- 4th exp
 a = t
 end

If the last field in the list has the form exp and the expression is a function call or a vararg
expression, then all values returned by this expression enter the list consecutively (see
§3.4.9).

The field list can have an optional trailing separator, as a convenience for machine-generated
code.

3.4.9 – Function Calls

A function call in Lua has the following syntax:

 functioncall ::= prefixexp args

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type
function, then this function is called with the given arguments. Otherwise, the prefixexp "call"
metamethod is called, having as first parameter the value of prefixexp, followed by the original
call arguments (see §2.4).

The form

 functioncall ::= prefixexp ‘:’ Name args

can be used to call "methods". A call v:name(args) is syntactic sugar for
v.name(v,args), except that v is evaluated only once.

Arguments have the following syntax:

 args ::= ‘(’ [explist] ‘)’
 args ::= tableconstructor
 args ::= String

http://www.lua.org/manual/5.2/manual.html#2.4
http://www.lua.org/manual/5.2/manual.html#3.4.9

All argument expressions are evaluated before the call. A call of the form f{fields} is
syntactic sugar for f({fields}); that is, the argument list is a single new table. A call of the
form f'string' (or f"string" or f[[string]]) is syntactic sugar for f('string');
that is, the argument list is a single literal string.

A call of the form return functioncall is called a tail call. Lua implements proper tail
calls (or proper tail recursion): in a tail call, the called function reuses the stack entry of the
calling function. Therefore, there is no limit on the number of nested tail calls that a program
can execute. However, a tail call erases any debug information about the calling function.
Note that a tail call only happens with a particular syntax, where the return has one single
function call as argument; this syntax makes the calling function return exactly the returns of
the called function. So, none of the following examples are tail calls:

 return (f(x)) -- results adjusted to 1
 return 2 * f(x)
 return x, f(x) -- additional results
 f(x); return -- results discarded
 return x or f(x) -- results adjusted to 1

3.4.10 – Function Definitions

The syntax for function definition is

 functiondef ::= function funcbody
 funcbody ::= ‘(’ [parlist] ‘)’ block end

The following syntactic sugar simplifies function definitions:

 stat ::= function funcname funcbody
 stat ::= local function Name funcbody
 funcname ::= Name {‘.’ Name} [‘:’ Name]
The statement

 function f () body end

translates to

 f = function () body end

The statement

 function t.a.b.c.f () body end

translates to

 t.a.b.c.f = function () body end

The statement

 local function f () body end

translates to

 local f; f = function () body end

not to

 local f = function () body end

(This only makes a difference when the body of the function contains references to f.)

A function definition is an executable expression, whose value has type function. When Lua
precompiles a chunk, all its function bodies are precompiled too. Then, whenever Lua
executes the function definition, the function is instantiated (or closed). This function instance
(or closure) is the final value of the expression.

Parameters act as local variables that are initialized with the argument values:

 parlist ::= namelist [‘,’ ‘...’] | ‘...’

When a function is called, the list of arguments is adjusted to the length of the list of
parameters, unless the function is a vararg function, which is indicated by three dots ('...') at
the end of its parameter list. A vararg function does not adjust its argument list; instead, it
collects all extra arguments and supplies them to the function through avararg expression,
which is also written as three dots. The value of this expression is a list of all actual extra
arguments, similar to a function with multiple results. If a vararg expression is used inside
another expression or in the middle of a list of expressions, then its return list is adjusted to
one element. If the expression is used as the last element of a list of expressions, then no
adjustment is made (unless that last expression is enclosed in parentheses).

As an example, consider the following definitions:

 function f(a, b) end
 function g(a, b, ...) end
 function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg
expression:

 CALL PARAMETERS

 f(3) a=3, b=nil
 f(3, 4) a=3, b=4
 f(3, 4, 5) a=3, b=4
 f(r(), 10) a=1, b=10
 f(r()) a=1, b=2

 g(3) a=3, b=nil, ... --> (nothing)
 g(3, 4) a=3, b=4, ... --> (nothing)
 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8
 g(5, r()) a=5, b=1, ... --> 2 3

Results are returned using the return statement (see §3.3.4). If control reaches the end of a
function without encountering a return statement, then the function returns with no results.

http://www.lua.org/manual/5.2/manual.html#3.3.4

There is a system-dependent limit on the number of values that a function may return. This
limit is guaranteed to be larger than 1000.

The colon syntax is used for defining methods, that is, functions that have an implicit extra
parameter self. Thus, the statement

 function t.a.b.c:f (params) body end

is syntactic sugar for

 t.a.b.c.f = function (self, params) body end

3.5 – Visibility Rules

Lua is a lexically scoped language. The scope of a local variable begins at the first statement
after its declaration and lasts until the last non-void statement of the innermost block that
includes the declaration. Consider the following example:

 x = 10 -- global variable
 do -- new block
 local x = x -- new 'x', with value 10
 print(x) --> 10
 x = x+1
 do -- another block
 local x = x+1 -- another 'x'
 print(x) --> 12
 end
 print(x) --> 11
 end
 print(x) --> 10 (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and
so the second x refers to the outside variable.

Because of the lexical scoping rules, local variables can be freely accessed by functions
defined inside their scope. A local variable used by an inner function is called anupvalue, or
external local variable, inside the inner function.

Notice that each execution of a local statement defines new local variables. Consider the
following example:

 a = {}
 local x = 20
 for i=1,10 do
 local y = 0
 a[i] = function () y=y+1; return x+y end
 end
The loop creates ten closures (that is, ten instances of the anonymous function). Each of
these closures uses a different y variable, while all of them share the same x.

6 – Standard Libraries

The standard Lua libraries provide useful functions that are implemented directly through the
C API. Some of these functions provide essential services to the language (e.g.,type and
getmetatable); others provide access to "outside" services (e.g., I/O); and others could be
implemented in Lua itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., table.sort).

All libraries are implemented through the official C API and are provided as separate C
modules. Lua has the following standard libraries:

•basic library (§6.1);
•string manipulation (§6.3);
•table manipulation (§6.5);
•mathematical functions (§6.6) (sin, log, etc.);
•bitwise operations (§6.7);

Except for the basic libraries, each library provides all its functions as fields of a global table
or as methods of its objects.

6.1 – Basic Functions

The basic library provides core functions to Lua.

assert (v [, message])

Issues an error when the value of its argument v is false (i.e., nil or false); otherwise, returns
all its arguments. message is an error message; when absent, it defaults to "assertion failed!"

collectgarbage ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different functions
according to its first argument, opt:

•"collect": performs a full garbage-collection cycle. This is the default option.
•"stop": stops automatic execution of the garbage collector. The collector will run
only when explicitly invoked, until a call to restart it.
•"restart": restarts automatic execution of the garbage collector.
•"count": returns the total memory in use by Lua (in Kbytes) and a second value
with the total memory in bytes modulo 1024. The first value has a fractional part, so
the following equality is always true:

 k, b = collectgarbage("count")
 assert(k*1024 == math.floor(k)*1024 + b)

(The second result is useful when Lua is compiled with a non floating-point type for
numbers.)

•"step": performs a garbage-collection step. The step "size" is controlled by arg
(larger values mean more steps) in a non-specified way. If you want to control the
step size you must experimentally tune the value of arg. Returns true if the step

http://www.lua.org/manual/5.2/manual.html#6.7
http://www.lua.org/manual/5.2/manual.html#6.6
http://www.lua.org/manual/5.2/manual.html#6.5
http://www.lua.org/manual/5.2/manual.html#6.4
http://www.lua.org/manual/5.2/manual.html#6.1
http://www.lua.org/manual/5.2/manual.html#pdf-table.sort
http://www.lua.org/manual/5.2/manual.html#pdf-getmetatable
http://www.lua.org/manual/5.2/manual.html#pdf-type

finished a collection cycle.
•"setpause": sets arg as the new value for the pause of the collector (see §2.5).
Returns the previous value for pause.
•"setstepmul": sets arg as the new value for the step multiplier of the collector
(see §2.5). Returns the previous value for step.
•"isrunning": returns a boolean that tells whether the collector is running (i.e., not
stopped).
•"generational": changes the collector to generational mode. This is an
experimental feature (see §2.5).
•"incremental": changes the collector to incremental mode. This is the default
mode.

dofile ([filename])

Opens the named file and executes its contents as a Lua chunk. When called without
arguments, dofile executes the contents of the standard input (stdin). Returns all values
returned by the chunk. In case of errors, dofile propagates the error to its caller (that is, dofile
does not run in protected mode).

error (message [, level])

Terminates the last protected function called and returns message as the error message.
Function error never returns.

Usually, error adds some information about the error position at the beginning of the
message, if the message is a string. The level argument specifies how to get the error
position. With level 1 (the default), the error position is where the error function was called.
Level 2 points the error to where the function that called error was called; and so on. Passing
a level 0 avoids the addition of error position information to the message.

_G

A global variable (not a function) that holds the global environment (see §2.2). Lua itself does
not use this variable; changing its value does not affect any environment, nor vice-versa.

getmetatable (object)

If object does not have a metatable, returns nil. Otherwise, if the object's metatable has a
"__metatable" field, returns the associated value. Otherwise, returns the metatable of the
given object.

ipairs (t)

If t has a metamethod __ipairs, calls it with t as argument and returns the first three results
from the call.

Otherwise, returns three values: an iterator function, the table t, and 0, so that the
construction

 for i,v in ipairs(t) do body end

http://www.lua.org/manual/5.2/manual.html#2.2
http://www.lua.org/manual/5.2/manual.html#2.5
http://www.lua.org/manual/5.2/manual.html#2.5
http://www.lua.org/manual/5.2/manual.html#2.5

will iterate over the pairs (1,t[1]), (2,t[2]), ..., up to the first integer key absent from the table.

load (ld [, source [, mode [, env]]])

Loads a chunk.

If ld is a string, the chunk is this string. If ld is a function, load calls it repeatedly to get the
chunk pieces. Each call to ld must return a string that concatenates with previous results. A
return of an empty string, nil, or no value signals the end of the chunk.

If there are no syntactic errors, returns the compiled chunk as a function; otherwise, returns
nil plus the error message.

If the resulting function has upvalues, the first upvalue is set to the value of env, if that
parameter is given, or to the value of the global environment. (When you load a main chunk,
the resulting function will always have exactly one upvalue, the _ENV variable (see §2.2).
When you load a binary chunk created from a function (see string.dump), the resulting
function can have arbitrary upvalues.)

source is used as the source of the chunk for error messages and debug information (see
§4.9). When absent, it defaults to ld, if ld is a string, or to "=(load)" otherwise.

The string mode controls whether the chunk can be text or binary (that is, a precompiled
chunk). It may be the string "b" (only binary chunks), "t" (only text chunks), or "bt" (both
binary and text). The default is "bt".

loadfile ([filename [, mode [, env]]])

Similar to load, but gets the chunk from file filename or from the standard input, if no file name
is given.

next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second
argument is an index in this table. next returns the next index of the table and its associated
value. When called with nil as its second argument, next returns an initial index and its
associated value. When called with the last index, or with nil in an empty table, next returns
nil. If the second argument is absent, then it is interpreted as nil. In particular, you can use
next(t) to check whether a table is empty.

The order in which the indices are enumerated is not specified, even for numeric indices. (To
traverse a table in numeric order, use a numerical for.)

The behavior of next is undefined if, during the traversal, you assign any value to a non-
existent field in the table. You may however modify existing fields. In particular, you may clear
existing fields.

pairs (t)

If t has a metamethod __pairs, calls it with t as argument and returns the first three results
from the call.

Otherwise, returns three values: the next function, the table t, and nil, so that the
construction

http://www.lua.org/manual/5.2/manual.html#pdf-next
http://www.lua.org/manual/5.2/manual.html#pdf-load
http://www.lua.org/manual/5.2/manual.html#4.9
http://www.lua.org/manual/5.2/manual.html#pdf-string.dump
http://www.lua.org/manual/5.2/manual.html#2.2

 for k,v in pairs(t) do body end

will iterate over all key–value pairs of table t.

See function next for the caveats of modifying the table during its traversal.

pcall (f [, arg1, ···])

Calls function f with the given arguments in protected mode. This means that any error inside
f is not propagated; instead, pcall catches the error and returns a status code. Its first result
is the status code (a boolean), which is true if the call succeeds without errors. In such case,
pcall also returns all results from the call, after this first result. In case of any error, pcall
returns false plus the error message.

print (···)

Receives any number of arguments and prints their values to stdout, using the tostring
function to convert each argument to a string. print is not intended for formatted output, but
only as a quick way to show a value, for instance for debugging. For complete control over
the output, use string.format and io.write.

rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a boolean.

rawget (table, index)

Gets the real value of table[index], without invoking any metamethod. table must be a
table; index may be any value.

rawlen (v)

Returns the length of the object v, which must be a table or a string, without invoking any
metamethod. Returns an integer number.

rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any metamethod. table
must be a table, index any value different from nil and NaN, and value any Lua value.

This function returns table.

select (index, ···)

If index is a number, returns all arguments after argument number index; a negative number
indexes from the end (-1 is the last argument). Otherwise, index must be the string "#", and
select returns the total number of extra arguments it received.

setmetatable (table, metatable)

Sets the metatable for the given table. (You cannot change the metatable of other types from

http://www.lua.org/manual/5.2/manual.html#pdf-io.write
http://www.lua.org/manual/5.2/manual.html#pdf-string.format
http://www.lua.org/manual/5.2/manual.html#pdf-tostring
http://www.lua.org/manual/5.2/manual.html#pdf-next

Lua, only from C.) If metatable is nil, removes the metatable of the given table. If the original
metatable has a "__metatable" field, raises an error.

This function returns table.

tonumber (e [, base])

When called with no base, tonumber tries to convert its argument to a number. If the
argument is already a number or a string convertible to a number (see §3.4.2), then
tonumber returns this number; otherwise, it returns nil.

When called with base, then e should be a string to be interpreted as an integer numeral in
that base. The base may be any integer between 2 and 36, inclusive. In bases above 10, the
letter 'A' (in either upper or lower case) represents 10, 'B' represents 11, and so forth, with 'Z'
representing 35. If the string e is not a valid numeral in the given base, the function returns
nil.

tostring (v)

Receives a value of any type and converts it to a string in a reasonable format. (For complete
control of how numbers are converted, use string.format.)

If the metatable of v has a "__tostring" field, then tostring calls the corresponding
value with v as argument, and uses the result of the call as its result.

type (v)

Returns the type of its only argument, coded as a string. The possible results of this function
are "nil" (a string, not the value nil), "number", "string", "boolean", "table", and
"function".

_VERSION

A global variable (not a function) that holds a string containing the current interpreter version.
The current contents of this variable is "Lua 5.2".

xpcall (f, msgh [, arg1, ···])

This function is similar to pcall, except that it sets a new message handler msgh.

6.2 – String Manipulation

This library provides generic functions for string manipulation, such as finding and extracting
substrings, and pattern matching. When indexing a string in Lua, the first character is at
position 1 (not at 0, as in C). Indices are allowed to be negative and are interpreted as
indexing backwards, from the end of the string. Thus, the last character is at position -1, and
so on.

The string library provides all its functions inside the table string. It also sets a metatable for
strings where the __index field points to the string table. Therefore, you can use the string
functions in object-oriented style. For instance, string.byte(s,i) can be written as s:byte(i).

http://www.lua.org/manual/5.2/manual.html#pdf-pcall
http://www.lua.org/manual/5.2/manual.html#pdf-string.format
http://www.lua.org/manual/5.2/manual.html#3.4.2

The string library assumes one-byte character encodings.

string.byte (s [, i [, j]])

Returns the internal numerical codes of the characters s[i], s[i+1], ..., s[j]. The default
value for i is 1; the default value for j is i. These indices are corrected following the same
rules of function string.sub.

Numerical codes are not necessarily portable across platforms.

string.char (···)

Receives zero or more integers. Returns a string with length equal to the number of
arguments, in which each character has the internal numerical code equal to its
corresponding argument.

Numerical codes are not necessarily portable across platforms.

string.dump (function)

Returns a string containing a binary representation of the given function, so that a later load
on this string returns a copy of the function (but with new upvalues).

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns the
indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional
numerical argument init specifies where to start the search; its default value is 1 and can be
negative. A value of true as a fourth, optional argument plain turns off the pattern matching
facilities, so the function does a plain "find substring" operation, with no characters in pattern
being considered magic. Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also returned,
after the two indices.

string.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the description
given in its first argument (which must be a string). The format string follows the same rules
as the ANSI C function sprintf. The only differences are that the options/modifiers *, h, L,
l, n, and p are not supported and that there is an extra option, q. The q option formats a
string between double quotes, using escape sequences when necessary to ensure that it can
safely be read back by the Lua interpreter. For instance, the call

 string.format('%q', 'a string with "quotes" and \n new line')

may produce the string:

 "a string with \"quotes\" and \

 new line"

Options A and a (when available), E, e, f, G, and g all expect a number as argument. Options
c, d, i, o, u, X, and x also expect a number, but the range of that number may be limited by

http://www.lua.org/manual/5.2/manual.html#pdf-load
http://www.lua.org/manual/5.2/manual.html#pdf-string.sub

the underlying C implementation. For options o, u, X, and x, the number cannot be negative.
Option q expects a string; option s expects a string without embedded zeros. If the argument
to option s is not a string, it is converted to one following the same rules of tostring.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures from pattern
over the string s. If pattern specifies no captures, then the whole match is produced in each
call.

As an example, the following loop will iterate over all the words from string s, printing one per
line:

 s = "hello world from Lua"

 for w in string.gmatch(s, "%a+") do

 print(w)

 end

The next example collects all pairs key=value from the given string into a table:

 t = {}

 s = "from=world, to=Lua"

 for k, v in string.gmatch(s, "(%w+)=(%w+)") do

 t[k] = v

 end

For this function, a caret '^' at the start of a pattern does not work as an anchor, as this would
prevent the iteration.

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have
been replaced by a replacement string specified by repl, which can be a string, a table, or a
function. gsub also returns, as its second value, the total number of matches that occurred.
The name gsub comes from Global SUBstitution.

If repl is a string, then its value is used for replacement. The character % works as an
escape character: any sequence in repl of the form %d, with d between 1 and 9, stands for
the value of the d-th captured substring. The sequence %0 stands for the whole match. The
sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key.

If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order.

In any case, if the pattern specifies no captures, then it behaves as if the whole pattern was
inside a capture.

If the value returned by the table query or by the function call is a string or a number, then it is
used as the replacement string; otherwise, if it is false or nil, then there is no replacement

http://www.lua.org/manual/5.2/manual.html#pdf-tostring

(that is, the original match is kept in the string).

Here are some examples:

 x = string.gsub("hello world", "(%w+)", "%1 %1")

 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0", 1)

 --> x="hello hello world"

 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")

 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)

 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)

 return load(s)()

 end)

 --> x="4+5 = 9"

 local t = {name="lua", version="5.2"}

 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)

 --> x="lua-5.2.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros
are counted, so "a\000bc\000" has length 5.

string.lower (s)

Receives a string and returns a copy of this string with all uppercase letters changed to
lowercase. All other characters are left unchanged. The definition of what an uppercase letter
is depends on the current locale.

string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns the
captures from the pattern; otherwise it returns nil. If pattern specifies no captures, then the
whole match is returned. A third, optional numerical argument init specifies where to start
the search; its default value is 1 and can be negative.

string.rep (s, n [, sep])

Returns a string that is the concatenation of n copies of the string s separated by the string
sep. The default value for sep is the empty string (that is, no separator).

string.reverse (s)

Returns a string that is the string s reversed.

string.sub (s, i [, j])

Returns the substring of s that starts at i and continues until j; i and j can be negative. If j
is absent, then it is assumed to be equal to -1 (which is the same as the string length). In
particular, the call string.sub(s,1,j) returns a prefix of s with length j, and
string.sub(s, -i) returns a suffix of s with length i.

If, after the translation of negative indices, i is less than 1, it is corrected to 1. If j is greater
than the string length, it is corrected to that length. If, after these corrections, i is greater than
j, the function returns the empty string.

string.upper (s)

Receives a string and returns a copy of this string with all lowercase letters changed to
uppercase. All other characters are left unchanged. The definition of what a lowercase letter is
depends on the current locale.

6.2.1 – Patterns

Character Class:

A character class is used to represent a set of characters. The following combinations are
allowed in describing a character class:

•x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the
character x itself.

•.: (a dot) represents all characters.

•%a: represents all letters.

•%c: represents all control characters.

•%d: represents all digits.

•%g: represents all printable characters except space.

•%l: represents all lowercase letters.

•%p: represents all punctuation characters.

•%s: represents all space characters.

•%u: represents all uppercase letters.

•%w: represents all alphanumeric characters.

•%x: represents all hexadecimal digits.

•%x: (where x is any non-alphanumeric character) represents the character x. This is
the standard way to escape the magic characters. Any punctuation character (even the
non magic) can be preceded by a '%' when used to represent itself in a pattern.

•[set]: represents the class which is the union of all characters in set. A range of
characters can be specified by separating the end characters of the range, in
ascending order, with a '-', All classes %x described above can also be used as
components in set. All other characters in set represent themselves. For example,
[%w_] (or [_%w]) represents all alphanumeric characters plus the underscore, [0-7]
represents the octal digits, and [0-7%l%-] represents the octal digits plus the
lowercase letters plus the '-' character.

The interaction between ranges and classes is not defined. Therefore, patterns like
[%a-z] or [a-%%] have no meaning.

•[^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter
represents the complement of the class. For instance, %S represents all non-space
characters.

The definitions of letter, space, and other character groups depend on the current locale. In
particular, the class [a-z] may not be equivalent to %l.

Pattern Item:

A pattern item can be

•a single character class, which matches any single character in the class;
•a single character class followed by '*', which matches 0 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
•a single character class followed by '+', which matches 1 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
•a single character class followed by '-', which also matches 0 or more repetitions of
characters in the class. Unlike '*', these repetition items will always match the shortest
possible sequence;
•a single character class followed by '?', which matches 0 or 1 occurrence of a
character in the class;
•%n, for n between 1 and 9; such item matches a substring equal to the n-th captured
string (see below);
•%bxy, where x and y are two distinct characters; such item matches strings that start
with x, end with y, and where the x and y are balanced. This means that, if one reads
the string from left to right, counting +1 for an x and -1 for a y, the ending y is the first
y where the count reaches 0. For instance, the item %b() matches expressions with
balanced parentheses.
•%f[set], a frontier pattern; such item matches an empty string at any position such
that the next character belongs to set and the previous character does not belong to
set. The set set is interpreted as previously described. The beginning and the end of

the subject are handled as if they were the character '\0'.

Pattern:

A pattern is a sequence of pattern items. A caret '^' at the beginning of a pattern anchors the
match at the beginning of the subject string. A '$' at the end of a pattern anchors the match at
the end of the subject string. At other positions, '^' and '$' have no special meaning and
represent themselves.

Captures:

A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a
match succeeds, the substrings of the subject string that match captures are stored
(captured) for future use. Captures are numbered according to their left parentheses. For
instance, in the pattern "(a*(.)%w(%s*))", the part of the string matching "a*(.)
%w(%s*)" is stored as the first capture (and therefore has number 1); the character matching
"." is captured with number 2, and the part matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For
instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two
captures: 3 and 5.

6.3 – Table Manipulation

This library provides generic functions for table manipulation. It provides all its functions inside
the table table.

Remember that, whenever an operation needs the length of a table, the table should be a
proper sequence or have a __len metamethod (see §3.4.6). All functions ignore non-numeric
keys in tables given as arguments.

For performance reasons, all table accesses (get/set) performed by these functions are raw.

table.concat (list [, sep [, i [, j]]])

Given a list where all elements are strings or numbers, returns the string
list[i]..sep..list[i+1] ··· sep..list[j]. The default value for sep is the empty
string, the default for i is 1, and the default for j is #list. If i is greater than j, returns the
empty string.

table.insert (list, [pos,] value)

Inserts element value at position pos in list, shifting up the elements list[pos],
list[pos+1], ···, list[#list]. The default value for pos is #list+1, so that a call
table.insert(t,x) inserts x at the end of list t.

table.pack (···)

Returns a new table with all parameters stored into keys 1, 2, etc. and with a field "n" with the
total number of parameters. Note that the resulting table may not be a sequence.

http://www.lua.org/manual/5.2/manual.html#3.4.6

table.remove (list [, pos])

Removes from list the element at position pos, returning the value of the removed element.
When pos is an integer between 1 and #list, it shifts down the elementslist[pos+1],
list[pos+2], ···, list[#list] and erases element list[#list]; The index pos
can also be 0 when #list is 0, or #list + 1; in those cases, the function erases the
element list[pos].

The default value for pos is #list, so that a call table.remove(t) removes the last
element of list t.

table.sort (list [, comp])

Sorts list elements in a given order, in-place, from list[1] to list[#list]. If comp is
given, then it must be a function that receives two list elements and returns true when the first
element must come before the second in the final order (so that not
comp(list[i+1],list[i]) will be true after the sort). If comp is not given, then the
standard Lua operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may
have their relative positions changed by the sort.

table.unpack (list [, i [, j]])

Returns the elements from the given table. This function is equivalent to

 return list[i], list[i+1], ···, list[j]

By default, i is 1 and j is #list.

6.4 – Mathematical Functions

This library is an interface to the standard C math library. It provides all its functions inside the
table math.

math.abs (x)

Returns the absolute value of x.

math.acos (x)

Returns the arc cosine of x (in radians).

math.asin (x)

Returns the arc sine of x (in radians).

math.atan (x)

Returns the arc tangent of x (in radians).

math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the
quadrant of the result. (It also handles correctly the case of x being zero.)

math.ceil (x)

Returns the smallest integer larger than or equal to x.

math.cos (x)

Returns the cosine of x (assumed to be in radians).

math.cosh (x)

Returns the hyperbolic cosine of x.

math.deg (x)

Returns the angle x (given in radians) in degrees.

math.exp (x)

Returns the value ex.

math.floor (x)

Returns the largest integer smaller than or equal to x.

math.fmod (x, y)

Returns the remainder of the division of x by y that rounds the quotient towards zero.

math.frexp (x)

Returns m and e such that x = m2e, e is an integer and the absolute value of m is in the range
[0.5, 1) (or zero when x is zero).

math.huge

The value HUGE_VAL, a value larger than or equal to any other numerical value.

math.ldexp (m, e)

Returns m2e (e should be an integer).

math.log (x [, base])

Returns the logarithm of x in the given base. The default for base is e (so that the function
returns the natural logarithm of x).

math.max (x, ···)

Returns the maximum value among its arguments.

math.min (x, ···)

Returns the minimum value among its arguments.

math.modf (x)

Returns two numbers, the integral part of x and the fractional part of x.

math.pi

The value of π.

math.pow (x, y)

Returns xy. (You can also use the expression x^y to compute this value.)

math.rad (x)

Returns the angle x (given in degrees) in radians.

math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator function rand provided by
Standard C. (No guarantees can be given for its statistical properties.)

When called without arguments, returns a uniform pseudo-random real number in the range
[0,1). When called with an integer number m, math.random returns a uniform pseudo-
random integer in the range [1, m]. When called with two integer numbers m and n,
math.random returns a uniform pseudo-random integer in the range [m, n].

math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal
sequences of numbers.

math.sin (x)

Returns the sine of x (assumed to be in radians).

math.sinh (x)

Returns the hyperbolic sine of x.

math.sqrt (x)

Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

math.tan (x)

Returns the tangent of x (assumed to be in radians).

math.tanh (x)

Returns the hyperbolic tangent of x.

6.5 – Bitwise Operations

This library provides bitwise operations. It provides all its functions inside the table bit32.

Unless otherwise stated, all functions accept numeric arguments in the range (-251,+251);
each argument is normalized to the remainder of its division by 232 and truncated to an
integer (in some unspecified way), so that its final value falls in the range [0,232 - 1]. Similarly,
all results are in the range [0,232 - 1]. Note that bit32.bnot(0) is 0xFFFFFFFF, which is
different from -1.

bit32.arshift (x, disp)

Returns the number x shifted disp bits to the right. The number disp may be any
representable integer. Negative displacements shift to the left.

This shift operation is what is called arithmetic shift. Vacant bits on the left are filled with
copies of the higher bit of x; vacant bits on the right are filled with zeros. In particular,
displacements with absolute values higher than 31 result in zero or 0xFFFFFFFF (all original
bits are shifted out).

bit32.band (···)

Returns the bitwise and of its operands.

bit32.bnot (x)

Returns the bitwise negation of x. For any integer x, the following identity holds:

 assert(bit32.bnot(x) == (-1 - x) % 2^32)

bit32.bor (···)

Returns the bitwise or of its operands.

bit32.btest (···)

Returns a boolean signaling whether the bitwise and of its operands is different from zero.

bit32.bxor (···)

Returns the bitwise exclusive or of its operands.

bit32.extract (n, field [, width])

Returns the unsigned number formed by the bits field to field + width - 1 from n. Bits
are numbered from 0 (least significant) to 31 (most significant). All accessed bits must be in
the range [0, 31].

The default for width is 1.

bit32.replace (n, v, field [, width])

Returns a copy of n with the bits field to field + width - 1 replaced by the value v.
See bit32.extract for details about field and width.

bit32.lrotate (x, disp)

Returns the number x rotated disp bits to the left. The number disp may be any
representable integer.

For any valid displacement, the following identity holds:

 assert(bit32.lrotate(x, disp) == bit32.lrotate(x, disp % 32))

In particular, negative displacements rotate to the right.

bit32.lshift (x, disp)

Returns the number x shifted disp bits to the left. The number disp may be any
representable integer. Negative displacements shift to the right. In any direction, vacant bits
are filled with zeros. In particular, displacements with absolute values higher than 31 result in
zero (all bits are shifted out).

For positive displacements, the following equality holds:

 assert(bit32.lshift(b, disp) == (b * 2^disp) % 2^32)

bit32.rrotate (x, disp)

Returns the number x rotated disp bits to the right. The number disp may be any
representable integer.

For any valid displacement, the following identity holds:

 assert(bit32.rrotate(x, disp) == bit32.rrotate(x, disp % 32))

In particular, negative displacements rotate to the left.

bit32.rshift (x, disp)

Returns the number x shifted disp bits to the right. The number disp may be any
representable integer. Negative displacements shift to the left. In any direction, vacant bits are
filled with zeros. In particular, displacements with absolute values higher than 31 result in zero
(all bits are shifted out).

For positive displacements, the following equality holds:

 assert(bit32.rshift(b, disp) == math.floor(b % 2^32 / 2^disp))

http://www.lua.org/manual/5.2/manual.html#pdf-bit32.extract

This shift operation is what is called logical shift.

7 – The Complete Syntax of Lua

Here is the complete syntax of Lua in extended BNF. (It does not describe operator
precedences.)

 chunk ::= block

 block ::= {stat} [retstat]

 stat ::= ‘;’ |
 varlist ‘=’ explist |
 functioncall |
 label |
 break |
 goto Name |
 do block end |
 while exp do block end |
 repeat block until exp |
 if exp then block {elseif exp then block} [else block] end |
 for Name ‘=’ exp ‘,’ exp [‘,’ exp] do block end |
 for namelist in explist do block end |
 function funcname funcbody |
 local function Name funcbody |
 local namelist [‘=’ explist]

 retstat ::= return [explist] [‘;’]

 label ::= ‘::’ Name ‘::’

 funcname ::= Name {‘.’ Name} [‘:’ Name]

 varlist ::= var {‘,’ var}

 var ::= Name | prefixexp ‘[’ exp ‘]’ | prefixexp ‘.’ Name

 namelist ::= Name {‘,’ Name}

 explist ::= exp {‘,’ exp}

 exp ::= nil | false | true | Number | String | ‘...’ | functiondef |
 prefixexp | tableconstructor | exp binop exp | unop exp

 prefixexp ::= var | functioncall | ‘(’ exp ‘)’

 functioncall ::= prefixexp args | prefixexp ‘:’ Name args

 args ::= ‘(’ [explist] ‘)’ | tableconstructor | String

 functiondef ::= function funcbody

 funcbody ::= ‘(’ [parlist] ‘)’ block end

 parlist ::= namelist [‘,’ ‘...’] | ‘...’

 tableconstructor ::= ‘{’ [fieldlist] ‘}’

 fieldlist ::= field {fieldsep field} [fieldsep]

 field ::= ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp | exp

 fieldsep ::= ‘,’ | ‘;’

 binop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’ | ‘%’ | ‘..’ |
 ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘~=’ |
 and | or

 unop ::= ‘-’ | not | ‘#’

	1 – Introduction
	2 – Basic Concepts
	2.1 – Values and Types
	2.2 – Environments and the Global Environment
	2.3 – Error Handling
	2.4 – Metatables and Metamethods
	2.5 – Garbage Collection
	2.5.1 – Garbage-Collection Metamethods
	2.5.2 – Weak Tables

	3 – The Language
	3.1 – Lexical Conventions
	3.2 – Variables
	3.3 – Statements
	3.3.1 – Blocks
	3.3.2 – Chunks
	3.3.3 – Assignment
	3.3.4 – Control Structures
	3.3.5 – For Statement
	3.3.6 – Function Calls as Statements
	3.3.7 – Local Declarations

	3.4 – Expressions
	3.4.1 – Arithmetic Operators
	3.4.2 – Coercion
	3.4.3 – Relational Operators
	3.4.4 – Logical Operators
	3.4.5 – Concatenation
	3.4.6 – The Length Operator
	3.4.7 – Precedence
	3.4.8 – Table Constructors
	3.4.9 – Function Calls
	3.4.10 – Function Definitions

	3.5 – Visibility Rules

	6 – Standard Libraries
	6.1 – Basic Functions
	assert (v [, message])
	collectgarbage ([opt [, arg]])
	dofile ([filename])
	error (message [, level])
	_G
	getmetatable (object)
	ipairs (t)
	load (ld [, source [, mode [, env]]])
	loadfile ([filename [, mode [, env]]])
	next (table [, index])
	pairs (t)
	pcall (f [, arg1, ···])
	print (···)
	rawequal (v1, v2)
	rawget (table, index)
	rawlen (v)
	rawset (table, index, value)
	select (index, ···)
	setmetatable (table, metatable)
	tonumber (e [, base])
	tostring (v)
	type (v)
	_VERSION
	xpcall (f, msgh [, arg1, ···])

	6.2 – String Manipulation
	string.byte (s [, i [, j]])
	string.char (···)
	string.dump (function)
	string.find (s, pattern [, init [, plain]])
	string.format (formatstring, ···)
	string.gmatch (s, pattern)
	string.gsub (s, pattern, repl [, n])
	string.len (s)
	string.lower (s)
	string.match (s, pattern [, init])
	string.rep (s, n [, sep])
	string.reverse (s)
	string.sub (s, i [, j])
	string.upper (s)
	6.2.1 – Patterns
	Character Class:
	Pattern Item:
	Pattern:
	Captures:

	6.3 – Table Manipulation
	table.concat (list [, sep [, i [, j]]])
	table.insert (list, [pos,] value)
	table.pack (···)
	table.remove (list [, pos])
	table.sort (list [, comp])
	table.unpack (list [, i [, j]])

	6.4 – Mathematical Functions
	math.abs (x)
	math.acos (x)
	math.asin (x)
	math.atan (x)
	math.atan2 (y, x)
	math.ceil (x)
	math.cos (x)
	math.cosh (x)
	math.deg (x)
	math.exp (x)
	math.floor (x)
	math.fmod (x, y)
	math.frexp (x)
	math.huge
	math.ldexp (m, e)
	math.log (x [, base])
	math.max (x, ···)
	math.min (x, ···)
	math.modf (x)
	math.pi
	math.pow (x, y)
	math.rad (x)
	math.random ([m [, n]])
	math.randomseed (x)
	math.sin (x)
	math.sinh (x)
	math.sqrt (x)
	math.tan (x)
	math.tanh (x)

	6.5 – Bitwise Operations
	bit32.arshift (x, disp)
	bit32.band (···)
	bit32.bnot (x)
	bit32.bor (···)
	bit32.btest (···)
	bit32.bxor (···)
	bit32.extract (n, field [, width])
	bit32.replace (n, v, field [, width])
	bit32.lrotate (x, disp)
	bit32.lshift (x, disp)
	bit32.rrotate (x, disp)
	bit32.rshift (x, disp)

	7 – The Complete Syntax of Lua

